A Framework of Feature Selection Methods for Text Categorization
نویسندگان
چکیده
In text categorization, feature selection (FS) is a strategy that aims at making text classifiers more efficient and accurate. However, when dealing with a new task, it is still difficult to quickly select a suitable one from various FS methods provided by many previous studies. In this paper, we propose a theoretic framework of FS methods based on two basic measurements: frequency measurement and ratio measurement. Then six popular FS methods are in detail discussed under this framework. Moreover, with the guidance of our theoretical analysis, we propose a novel method called weighed frequency and odds (WFO) that combines the two measurements with trained weights. The experimental results on data sets from both topic-based and sentiment classification tasks show that this new method is robust across different tasks and numbers of selected features.
منابع مشابه
Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کاملA multi-criteria decision making approach in feature selection for enhancing text categorization
This paper considers the problem of feature selection in text categorization. Previous works in feature selection often used a filter model in which features, after ranked by a measure, are selected based on a given threshold. In this paper, we present a novel approach to feature selection based on multi-criteria decision making of each feature. Instead of only one criterion, multi-criteria of ...
متن کاملImproving Feature Selection Techniques for Machine Learning
As a commonly used technique in data preprocessing for machine learning, feature selection identifies important features and removes irrelevant, redundant or noise features to reduce the dimensionality of feature space. It improves efficiency, accuracy and comprehensibility of the models built by learning algorithms. Feature selection techniques have been widely employed in a variety of applica...
متن کاملA Novel One Sided Feature Selection Method for Imbalanced Text Classification
The imbalance data can be seen in various areas such as text classification, credit card fraud detection, risk management, web page classification, image classification, medical diagnosis/monitoring, and biological data analysis. The classification algorithms have more tendencies to the large class and might even deal with the minority class data as the outlier data. The text data is one of t...
متن کاملMMR-based Feature Selection for Text Categorization
We introduce a new method of feature selection for text categorization. Our MMR-based feature selection method strives to reduce redundancy between features while maintaining information gain in selecting appropriate features for text categorization. Empirical results show that MMR-based feature selection is more effective than Koller & Sahami’s method, which is one of greedy feature selection ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009